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1. INTRODUCTION 
Fuzzy set theory on semi-group has already been developed. 

The idea of belongingness of fuzzy point by Murali [25]. 

The idea of quasi-coincidences of fuzzy points with fuzzy 

sets was introduced by Bhakat and Das [3,4]. Molodtsov 

generalized the idea of fuzzy set theory and introduced the 

concept of fuzzy soft set theory [24]. It is a powerful 

mathematical tool for dealing with uncertainties. These 

uncertainties occur in many areas such as economics, 

engineering, environmental science, medical science, and 

social science. Up to the present, research on soft sets has 

been very active and many important results have been 

achieved in the theoretical aspect. Maji et al. extand the 

work and defined algebraic operations in fuzzy soft sets 

theory [23]. Yin and Zhan characterized the order semi-

group in term of fuzzy soft ideals [40]. 

An AG-groupoid is non-associative algebraic structure lies 

between a groupoid and a commutative semi-group [18]. If 

an AG-groupoid S contain left identity then the equation 

hold SS 2
. The left identity of AG-groupoid is unique. 

An AG-groupoid with right identity become commutative 

semi-group. If },{ ba is any subset of AG-groupoid S with 

left identity .)()( ebabea  Now our purpose is to bring 

out some consistent probes for intra-regular AG-groupoids 

using the new generalized concept of fuzzy soft sets. The 

purpose of this paper is to deal with the algebraic structure 

of intra-regular AG-groupoid by applying fuzzy soft theory. 

We introduced some new types of fuzzy ideals namely 

),(  q - fuzzy soft left ideals and ),(  q - 

fuzzy soft quasi-ideals in AG-groupoids and develop some 

new results. We give some characterizations for intra-

regular AG-groupoids using the properties of 

),(  q - fuzzy soft quasi-ideals. 

2. PRELIMINARIES 

A groupoid ,.),(S is called AG-groupoid if its elements 

hold the left invertive law, 

( ) ( ) .db c cb d  Every AG-groupoid Satisfy the medial 

law which is, 

( )( ) ( )( ), for all ,  ,  ,  .ab cd ac bd a b c d S   

An AG-groupoid with the left identity satisfies the 

following equations. 

)()( acbbca  and ( )( ) ( )( ).ab cd db ca   

( )( ) ( )( )ab cd dc ba
 
It is called paramedial law. 

Let S be an AG-groupoid. A non-empty subset A is called 

AG-subgroupoid if .2 AA  A non-empty subset A of an 

AG-groupoid is called a left (right) ideal of S if 

ASA ).( AAS   A nonempty subset Q of an AG-

groupoid is called quasi-ideal of S if .QQSSQ   An 

AG-groupoid S with left identity is .2 SS   It is easy to 

see that every one sided ideal is quasi-ideal. It is given that 

)(][,][ SaaSaaQSaaaL   

are principal left ideal and principal quasi-ideal. Let X be a 

non empty set. A fuzzy subset f of X is defined as a 

mapping from X into ]1,0[  , where ]1,0[ is the closed 

interval of real number. We denote by )(X the set of all 

fuzzy subsets of X .  

A fuzzy subsetf of S of the form. 



 


otherwise, 0

,  )0(
)(

xyift
yf  

is said to be the fuzzy point with support x  and value t  and 

is denoted by ,tx where (0,1].t  

Let f and g be any fuzzy subsets of an AG-groupoid S . 

Then the product gf  is defined by 

 
 ( ) ( )  if  ,

( )

0                      otherwise.

a bc

f b g c a bc
f g a 

  


 



 

In what follows let ]1,0[,  be such that ,   for 

any ,XY  we defined 

 X  be the fuzzy subset of X  by 
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 )(xX  for all Yx and  

 )(xY  otherwise. 

Clearly 


 Y is the characteristic function of Y if 0  and 

1,   

Let U  be an initial universe set and A  be the set of 

parameters. Let 
UP denotes the power set of U . A pair 

),( AF  is called a soft set over U , where F is a mapping 

given by .: UPAF   

A pair  AF, is called a fuzzy soft set over U , where 

F is a mapping given by )(: UAF  represents 

fuzzy sets of U . 

The product and extended intersection of two fuzzy soft sets 

 AF,  and  BG, over an semigroup S  is a fuzzy soft 

set over S and is defined as 

 

















, if  )()(

, if  ) (

, if  )(

)(

BAGF

ABG

BAF

GF











  

for all BAC  . This is denoted by 

 BGAFCGF , ,,  [23] .  

 

















. if     )()(

, if                 )(

, if                 )(

)(

BAccGcF

ABccG

BAccF

cH  

for all BACc  . This is denoted by 

CHBGAF ,,, 


.[23] 

A new ordering relation is defined on ( )F S  denoted as 

,"" ),( q  as follows. 

For any , ( )f g F S gqf ),(  , we mean 

that fxr   implies gqxr   for all  Sx  and 

].1,(r  

 Let  AF,  and  BG,  be two fuzzy soft sets over 

U . We say that  AF,  is an ),(  -fuzzy soft 

subset of  BG, and write  BGAF ,, ),(  if   

)(i .BA  

)(ii  For any ).()(, ),(   GqFA   

A fuzzy soft set  AF, over an AG-groupoid S is called 

 Fuzzy soft left (right) ideal over S if 

ES,  AFAFAF ,(,,

),,  AFES  . 

 Fuzzy soft bi-ideal over S if  AFAFAF ,,,  

and  AFAFASAF ,,,,  

 An ( ),  q -fuzzy soft left ideal over S if 

 AFAFAS ,,),( ),(   and satisfied the 

condition )()(   FqyFx rr    for all  

ASyx  ,,  and ].1,(r  

 An ),(  q  -fuzzy soft quasi-ideal over S if   

i  AFAFAF ,,, ),(  , and  

( , )

( ) , ( , ) ( , ) ,

,

ii F A S A S A F A

F A 



     

    

and satisfied the condition   

)()(   FqyFx rr  for all 

ASyx  ,,  and ].1,(r  

Corollary1. Let O be an ordered semigroup and OR  . 

Then R is a left (resp.,right ideal, bi-ideal, quasi-ideal) of 

O  if and only if ),( AR is an ),(  q -fuzzy soft 

left ideal (resp.,right ideal,bi-ideal,quasi-ideal) over O for 

any .EA  

Lemma1. Let ),(, Xgf   then gqf ),(   if and 

only if }),(min{}),(max{  xfxg  for all .Xx  

Proof. It is straightforward. 

Lemma2. Let S  be an AG-groupoid and SYX ,  . Then 

i YX   if and only if 




  .),( YX q  

ii .)(),(








  YXYX   

iii 






  )(),( XYYX  [24] 

Proof. It is straightforward. 

3. SOME CHARACTERIZATIONS OF 

INTRA-REGULAR AG-GROUPOIDS 

In this section we have characterized the intra-

regular AG-groupoids using the generalized fuzzy 

soft quasi ideals. 

Theorem 1. Let S be an AG-groupoid with left identity e . 

Then S  is intra-regular If and only if 

1 2 ( , ) 1 2( , , ) , ( , , ) ,G A F B G C G A F B G C 

 

           , 

for any ),(  q  -fuzzy soft quasi-ideals  AG ,1 and 

 CG ,2  and for. any ),(  q - fuzzy soft left-ideal 

 BF,  over .S  

Proof. The proof is straightforward. 
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Example 1. Let }3,2,1{S  and the binary operation ""  

define on S as follows: 

 

3333

3332

3221

321

 

Then S is an AG-groupoid.   

Let }4.0,35.0{E  and define a fuzzy soft set 

 AF, over S as follows 



 


otherwise.      

,}2,1{ if 2
))((

5
2

x
xF


  

Then  AF,  is an ),( 4.03.03.0 q  - fuzzy soft left ideal 

of S . 

Again let }8.0,7.0{E and define a fuzzy soft set 

 AG,  over S  as follows: 



 


otherwise.    

,}2,1{ if 
))((

5
2

x
xG


  

Then  AF,  is an ),( 4.02.02.0 q - fuzzy soft bi-ideal 

of S . 

Theorem 2. Let S be an AG-groupoid with left identity e .  

Then S is intra-regular if and only if 

( , )

, ,

( , , ) ,

G A F B

G A F B G A 



  

      
 , for any 

),(  q - fuzzy soft quasi- ideal  AG,  and for any 

),(  q - fuzzy soft left ideal  BF, over S .  

Proof.Let S  be an intra-regular and let a  be an element of 

S , BA and  


BAHBFAG ,,, . 

 We consider the following cases. 

Case 1:  \ .A B    

Then  ))(()(  FGG   . 

Case 2:  \ .B A    

Then  ))(()(  FGF   . 

Case 3:  .A B     

Then ( )( ) ( ( ) ( )) ( ).G F G F G     

Now we show that  

( , )( ) ( ) ( ( ) ( )) ( ).G F G F G       Since S  is 

intra-regular, therefore for any a  in S   there exist x  and 

y in S  such that yxaa )( 2 .  

So by )1( , )2( , )3( and )4( we get 

2

2

2 2

2 2 2 2

2 2 2 2 2

2 2 2 2

2 2

[ ] [ { }]

[ { }] [ { }]

Now { } { (( ) )}

{( )( )} ( ){ ( )}

( ){ } { }( )

({ } ) ({ })

({ })( ) (({ }) )

( ) Where ({ })

 so [ ( )]

a xa y x aa y

a xa y y xa a

y xa y x xa y

y xa xy xa y xy

xa xy y x a x

a y x x a x y

y x aa a y x a

a ta t y x

a a ta a

 

 



 

 

 

 

 



 

Then we have 

 
  

  

  

  

 

 

  

  

 .),))(()((min

),(),(minmin

),({min},),(minmin

)),)(((min),),)(((min),),)(((minmin

)),)(((max),),)(((max),),)(((maxmin

,))((),)((),)((minmax

,))((),)((),)(((minminmax

,))(()),)((),)(((minsupminmax

,))(()),())(()(((minmax

,))((),))(()(((minmax

),))(())()(((max

)(























aFG

aFaG

aFaG

aGaFaG

aGtaFaG

aGtaFaG

aGtaFaG

aGsFrG

aGtaaFG

nGmFG

aGFG

rstaa

mna















































It follows that  

).())()(()()( ),(   GFGqFG  That is 

))()(()( ),(   GFGqH  . Thus in any case, we 

have .))()(()( ),(   GFGqH   

Therefore 

.),),,((,, ),( 


AGBFAGBFAG  Co

nversely.  Let Q  is a bi-ideal and L  is left-ideal of S , 

then by corollary ),( EL   is  ),(  q - fuzzy soft 

left ideal and ),( EQ  is ),(  q - fuzzy soft bi-
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ideal of S . Now by the assumption, we have 

( , )

( , ) ( , )

(( ( , ) ( , )) ( , )).

Q E L E

Q E Q E Q E 



 

   
 

Hence we have 

( ) ( , )

( , )

( , ) ( )

(( ) )

.

Q L Q L

Q L Q

QL Q

q

  

    

  

    



  

  

  



  

   



 

So this implies QQLLQ )( so 

QQLaLQa )(  for a  in S  

)(][,][ aSSaaaQSaaaL   are left and 

quasi ideals of S generated by a  . 

2

2 2 2

[ ( )] [ ]

([ ( )][ ])[ ( )]

{( )( )}[ ( )]

( )[ ( )]

( ) ( )[( )]

a Sa aS a Sa

a Sa aS a Sa a Sa aS

Sa Sa a Sa aS

Sa a Sa aS

Sa Sa Sa aS Sa

   

     

  

  

   

 

Hence S is intra-regular. 

Theorem 3. Let S be an AG-groupoid with left identity e .  

Then S is intra-regular if and only if 




BGAFBGAF ,,,, ),(   , for any 

),(  q - fuzzy soft quasi-ideals   AF,  and for. 

any ),(  q - fuzzy soft left-ideal  AG, over .S  

Proof.Let S  be an intra-regular and let a  be an element of 

S , BA and  


BAHBGAF ,,, .  

We consider the following cases. 

Case 1:  BA \  .  

Then ))(()(  GFF   . 

Case 2:  AB \  .  

Then  ))(()(  GFG   . 

Case 3:  BA  .  

Then )()(  GF 
 

 and )()())((  GFGF   .  Now we show that  

)()()()( ),(   GFGF  . Since S is intra-

regular, therefore for any a  in S  there exist x  and y  in 

S  such that yxaa )( 2 . So by )1( , )2( , )3( , and 

)4( we have 

2

2

2

2

2

[ ] [ { }]

[ { }] [ { }]

[ { }][{ } ]

{ }[[ { }] ]

[ [ { }]]{ }

{[ [ { }]] }

{ [ [ { }]]}( )

({ [ [ { }]]} ) ( ) 

where { [ [ { }]]}

 so ( ).

a xa y x aa y

a xa y y xa a

y xa xa y

xa y xa y

y y xa a x

a y y xa x

x y y xa aa

a x y y xa a a ta

t x y y xa

a a ta

 

 











 





 

Then we have 

 

  
   

 

  

  

  

max ( ( ) ( ))( ),

max sup min ( )( ), ( )( ) ,

max min ( ) , ( )( ) ,

min max{ ( )( ), }, max{ ( )( ), }

min min ( )( ), }, min{ ( )( ),

min min ( )( ), }, min{ ( )( ),

min min ( )( ), ( )( ),

min ( (

a uv

F G a

F u G v

F a G ta

F a G ta

F a G a

F a G a

F a G a

F

  

  

  

   

   

   

  















  ) ( ))( ), .G a  

 

It follows  

that )()()()( ),(   GFqGF  .  

That is  ))(()( ),(   GFqH  .  

Thus in any case, we have 

.))(()( ),(   GFqH   

Therefore, 




BGAFBGAF ,,,, ),(   

Conversely. Let Q  and L  are any two left ideals of S , 

then ),( EQ  and ),( EL are  ),(  q - fuzzy 

soft quasi ideals and ),(  q - fuzzy soft left ideals 

of S . Now by the assumption, we have 

.),(),(),(),( ),( ELEQELEQ 


  

Hence we have 

( ) ( , )

( , ) ( , )

Q L Q L

Q L QLq
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for a  in )(][, aSSaaaQS   and 

SaaaL ][ are quasi ideal and left ideal generated by  

.a   

Therefore using )1( , )2( , )3( , and )4( we get 

2

[ ( )] [ ]

[ ( )][ ]

[ ] ( ) ( ) ( )

.

a Sa aS a Sa

a Sa aS a Sa

a a Sa a Sa Sa aS a Sa aS Sa

Sa

   

   

      



Hence S is intra-regular. 

Theorem 4. Let S be an AG-groupoid with left identity e . 

Then S is intra-regular if and only if 

1 2

( , ) 1 2

( , , ) ,

( , , ) ,

G A G B F C

G A G B F C 

 

    

      
 , for any 

),(  q  -fuzzy soft quasi-ideals  AG ,1  and 

 BG ,2  for any ),(  q - fuzzy soft left ideal 

 CF,   over S.   

Proof .Let S  be an intra-regular and let a  be an element of 

S , CBA  )( and 




CBAHCFBGAG ,,),,( 21 . We 

consider the following cases. 

Case 1: CBA  \  .  

Then ))()(()( 211  FGGG   . 

Case 2: CAB  \  .  

Then ))()(()( 212  FGGG  .  

Case 3: BAC  \  . 

Then ))()(()( 21  FGGF   . 

Case 4: CBA  )(  .  

Then )())()(( 21  FGG    

and 1 2 1 2(( ) )( ) ( ( ) ( )) ( )G G F G G F    .  Now 

we show  

that  
1 2

( , ) 1 2

( ( ) ( )) ( )

( ( ) ( )) ( )

G G F

G G F 

  

  

 


. 
 

 Since S is intra-regular, therefore  for any a  in S  there 

exist x  and y  in S  such that yxaa )( 2 .  

So by )1( , )2( , )3( , and )4(   we have 

2

2 2

2

2

2

2 2

2 3

( ) [ ( )]

[ ( )] [ ( )]

[ ( )][( ) ] ( )[{ ( )} ]

{ [ ( )]}( )

( )({ [ ( )]} )

( )({ [ ( (( ) ))]} )

( )({ [ (( )( ))]} )

( )( [( )( )]} )

( )({( )[ ]} )

( ){

a xa y x aa y

a xa y y xa a

y xa xa y xa y xa y

y y xa a x

aa y y xa x

aa y y x xa y x

aa y y xa xy x

aa y xa xy x

aa xa xy x

aa x

 

 

 













 3 2

2 3

[ ]}( )

( ){ ( )} where ( ( )).

xy xa

aa t xa t x xy 

 

Then we have 

 

  
  

  

 

  

  

 .),)(()))(()((min

),(),(),(minmin

),({min},),(min},),(minmin

)),)(((min),),)(((min),),)(((minmin

,))((),)((),)(((minminmax

,))((),)(()),)((),)(((minsupminmax

,))(()),)((),)(((minsupminmax

,))(()),)((),)(((minsupminmax

,))()(()),))(()(((minmax

,))((),))(()(((minmax

),))(())()(((max

21

21

21

21

21

21
)(

2

21
)(

2

21
)(

2

21

21

21























aFaGG

aFaGaG

aFaGaG

aFaGaG

aFaGaG

aFaFsGrG

aFsGrG

xaFsGrG

xatFaaGG

vFuGG

aFGG

rsaa

rsaa

rsaa

uva



















































































It follows  

that

)())()(()())()(( 21),(21   FGGqFGG 

That is  ))()(()( 21),(   FGGqH  . Thus in 

any case, we have 

.))()(()( 21),(   FGGqH   

Therefore 
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1 2

( , ) 1 2

( , , ) ,

(( , , ) , ).

G A G B F C

G A G B F C 

 

    

      
 

Conversely let 1Q  and 2Q  are quasi-ideal and L  is left-

ideal of S , then corollary 123  ),( 1 EQ  and ),( 2 EQ  

are ),(  q - fuzzy soft quasi ideal and 

),( EL is ),(  q  -fuzzy soft left ideal of S . Now 

by the assumption. Hence we have 

1 2 1 2

1 2

1 2

( ) ( , )

( , )

( , ) ( )

( )

(( ) )

Q Q L Q Q L

Q Q L

Q Q L

q

 

 

 

     



    



  

   

  



    

   



 

So this implies ( LQQLQQ )() 2121   so 

LQQa  )( 21 this implies that  LQQa )( 21  for 

a  in S , )(][,][ aSSaaaQSaaaL   are 

left and quasi ideals of S   generated by a   

2

([ ( )] [ ( )]) [ ]

([ ( )][ ( )])[ ]

a Sa aS a Sa aS a Sa

a Sa aS a Sa aS a Sa

Sa

      

     



He

nce S is intra-regular. 

Theorem 5.Let S be an AG-groupoid with left identity e  .  

Then S  is intra-regular if and only if 

1 2

( , ) 1 2

( , , )  ,

( , , ) ,

F A F B G C

F A F B G C 

 

     

      
  

for any   , q -fuzzy soft Left ideals  AF ,1  

and  BF ,2  and for any ),(  q -fuzzy soft quasi 

ideal   CG,  over S  . 

Proof. Let S be an intra-regular and let  a be an element of 

S  , CBA  )( and  

 


CBAHCGBFAF ,,),,( 21  . We 

consider the following cases. 

Case 1: CBA  \  .  

Then ))()(()( 211  GFFF   . 

Case 2: CAB  \  .  

Then  ))()(()( 212  GFFF   . 

Case 3: BAC  \  .  

Then  )(G  ( ))()( 21 GFF   

Case4: CBA  .  

Then  )())()(( 21  GFF  and  

)())()(())()( 2121  GFFGFF    . Now we 

show that  
1 2

( , ) 1 2

( ( ) ( )) ( )

( ( ) ( )) ( ).

F F G

F F G 

  

  

 


 . 

 

Since  S   is intra-regular,therefore for any a   in S  there 

exist x  and y  in S  such that yxaa )( 2 .  

 So by )1( , )2( , )3( , and )4( we have 

2

2 2

2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

( ) ( ( ))

( ( )) ( ( ))

Now ( ) ( (( ) )) ( ( )( ))

( )( ( ))

( )( ) ( )( )

(( ) ) ( )( )

( )( ) ( )( )

 So (( )( ))

a xa y x aa y

a xa y y xa a

y xa y x xa y y xa xy

xa y xy

xa xy y x a x

a y x x aa x y

y x aa y a x a

a y a x a a

 

 

 



 

 

 



 

Then we have  

 

  
 

  
  

 

  

  

 .),)(()))(()((min

),(),(),(minmin

),({min},),(min},),(minmin

)),)(((min),),)(((min),),)(((minmin

,))((),)((),)(((minminmax

,))(()),)((),)(((minminmax

,))(()),)((),)(((minsupminmax

,))(())),)())((()(((minmax

,))((),))(()(((minmax

),))(())()(((max

21

21

21

21

21

2

2

2

1

21
)))(((

22

21

21

21

22





















aGaFF

aGaFaF

aGaFaF

aGaFaF

aGaFaF

aGayFaxF

aGsFrF

aGaxayFF

vGuFF

aGFF

rsayax

uva













































Thus ))()(()( 21),(   GFFqH  .  

   Therefore    

Hq,F1 F2G.

1 2

( , ) 1 2

( , , ) ,

(( , , ) , ).

F A F B G C

F A F B G C 

 

    

      
 

Conversely Let 1L  and 2L  are left ideal and Q  is quasi-

ideal of  S ,  then ),( 1 EL  and ),( 2 EL  are 

),(  q - fuzzy soft left ideal and ),( EQ  is 
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),(  q  -fuzzy soft left ideal of S . Now by the 

assumption, we have 

Hence we have 

.

)?)?((

)(

)(),(

),(

),()(

21

21

2121























QLL

QLL

QLLQLL

q







 

 

So this implies ( QLLQLL )() 2121   so 

QLLaQLLa )()( 2121   for a  in S  

)(][,][ aSSaaaQSaaaL   are left and 

quasi ideals of S  generated by a . So 

2

)()))(((

)())()((

Sa

aSSaaSaaSaa

aSSaaSaaSaa







 

Hence S is intra-regular. 
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